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ABSTRACT

Let the points
(1) (xg0¥3)e (1 = 1,000,k5 k2 2), ag Xy <%y <t < <D,
I = [a,b], (=® < a<b <™
be prescribed. Furthermore, let m and n be integers such that
1 : n < k ﬁ m,
and define the polynomial class
Io= et px) e ®, P(xy) =yy, (4 =1,000,0) .

Within Hm we determine P (x) as the solution of the extremum problem

(2) f (P(n)(x))zdx = minimum for P(x) e M .
I

Finally, let S(x) = SZm_1(x) be the natural spline interpolant of degree
2n = 1 of the k points (1). Our main result is

gggggggsi. 1. There is a unique polynomial Pm(x) which is the
solution of the minimum problem (2).

2. We have

lim Pm(x) = S(x) uniformly in xe1.

m¥+®
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SIGNIFICANCE AND EXPLANATION
In the finite interval [a,b] we have prescribed abscissae
< Xy < eee K Xy and corresponding ordinates YyeYgreee ¥y Let

3({x) = SZk_1(x) be the natural spline of degree 2n - 1 that interpolates

chose k points. This requires that 1 < n < k. Furthermore, let m be an

integer such that m > k, and let P (x) be the polynomial of degree at

most m that interpolates the k points, and such as to minimize the

integral

b
[ ™ (x))2ax ,
a

within the entire class of polynomials of degree m that interpolate the k

points. It is shown that ags wm + = the polynowial Pm(x) converges to the

spline S(x).
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INTERPOLATING SPLINES AS LIMITS OF POLYNOMIALS

I. J. Schoenberg

For Alexander Ostrowski on his 90th birthday on September 25, 1983,

from one of his grateful students.

1. Introduction. Let the points

(1.1) (xi,yi), (L = 1,e00,k7 k2 2), a $ Xy <Xy < eee<x <D,
I = (a,b], (- < a<b< o ,

be prescribed. The basic interpolant is the Lagrange interpolating
polynomial. If additional consecutive derivatives at the points (1.1) are
available, we can construct the Hermite interpolation polynomial. In the
absence of such additional data, we propose here the following construction:

Let m and n be integers such that

(1.2) 1

A

n<k<m,

=
and let us consider the polynomial class
(1.3) L= {P(x); P(x) € L P(xi) =y, (4= T,000,k) )} &
Within this class we determine the polynomial Pm(x) which is "most nearly a
polynomial of degree at most n - 1 in the interval 1I." We interpret this
requirement to mean the Pm(x) is the solution of the extremum problem
(1.4) [ " (x))2ax = minimum for B(x) € I .

b 8
Equivalently: Writing

(1.5) M, o= inf [ (™) (x))2ax ,
" oren I

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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the polynomial Pm(x) is uniquely defined by

(1.6) [ M xax =m0 Bx) e .
I

Of course, the existence and uniqueness of P, (x) is yet to be established.
Our main subject is the behavior of Pm(x) as m + = The statement of '

our result (Theorem 1 below) requires some known properties of natural spline

interpolation. We describe its definition and the three properties that we

need.

I. Let n be an integer such that

(1.7) t<nc<k,

and let S(x) = S, _,(x) denote a function satisfying the following four

conditiona:
1¢  s(x) e c2""2(m)

2° S(x) e ﬂzn_1 in each interval (xj,xj+1), (3 = 1,000,k = 1),

3 S(x) e n

-1 in (-=x)), and S(x)emw , in (% et

4° S(xi) =¥y (L1 = 1,..4,k)

Then S(x) is uniquely defined by the conditions 1° to 4°.

The function S(x) is called the natural spline interpolant of the

points (1.1) of degree 2n =~ 1.
II. If £(x) € c® (1) is such that

(1.8) £ix;) =y, (L= Veaed)
(1.9) £(n=1) () 15 absolutely continuous, £(%(x) e Ly (1) ,
then
(1.10) [ g™ x2ax > [ s'™or2ax ,
I I

with the equality siqn only if f£(x) = S(x) in I.
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: III. If £(x) @ ¢ (1) satisfies (1.8) and (1.9), then

“ I I I

(See for instance [1, 110-116]).
Our main result is

Theorem 1. 1. There is a unique polynomial Pm(x) satisfying (1.6),

% where "n,m is defined by (1.5).
i 2. We have
L 3
f (1.12) lim P (x) = S(x) uniformly in x@€ I .
4{ m+o
:
- In view of the extremum property II of S(x), the limit relation (1.12)
i may not seem surprising. Even so it is no immediate consequence and our proof
+.. of Theorem 1 occupies the remaining three sections of this note.
. 2. The existence and uniqueness of Pm(x). 1. Without loss of
.'.
; generality we may restrict the search for Pm(x) to the subclass n; Cc qm of
o m
! polynomials P(x) = ) atxr/rl satisfying
L 0
-
*, (n) 2
% (2.1) I[(p (x))%dx < M, o+ 1,
3 where
A ;
v m
: (2.2) pM = ¥ axTV(cr-mt .
i r=n

Let Xt(x), (L = 0,1,...) Dbe the orthonormal polynomials for the interval I,

and let

P oo aw
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an
(2.3) P = T oex(x .
0

FProm (2.1) and Parseval's theorem we conclude that ll'ill cf SMymt" x2,
and hence that Ieil $K (41 =0,e0e,m=n). From (2?3) it follows that the
coefficients
(2.4) & 84 qrece Ry, are bounded .
Because n < k we have that P(x;) = Yy for i = 1,...,n. Solving this
system for the unknowns a,,...,a,_4, in terms of the coefficients (2.4), we
conclude that for an appropriate eonstant N we have
la,l ¢8 (4 =0,000,m) &

Now familiar compactness arguments will insure the existence of P_(x)
satisfying (1.6) and (1.5).,

2. Let py(x) and pPy(x) Dbe two polynomials in nn such that

(2.5) [ (pf"2ax = [ (p{™ ) ax = n . .
I I

Bvidently also
(2.6) Pp(x) = (1 = t)py(x) + tpy(x) @ II-, (0 <t <)
and
(2.7) ett) = [ (1 = opf™ 0 + epf™ x))Zax - m o
I
is a quadratic polynomial in t which is seen to satisfy the equations
(2.8) v(0) =0, ¢(1) =0.
Moreover, by (2.7)

2 1 (pg") - pé"))zdt +At +B .

I

(2.9) v(t) = ¢t

Let us show that the inequality
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[ (p{™ - p{™)2at > 0
I

is impossible. Indeed, it would imply by (2.8) and (2.9), that v(to) <0

for some t, with 0 < t, < 1. But then, by (2.7), we would have
(n),2
]{ ( pto y¥ax < M ., contradicting the definition of M, . as the minimum.
We must therefore have

{ (p{™ - p{™)2ax = 0, hence p{M(x) = p{™(x) .

But then py(x) = py(x) + R(x), where R(x) @ LA

i=1,ee,k, and k exceeds the degree n - 1 of R(x), we conclude that

+ Since R(xy) = 0 for
R(x) = 0 and therefore p;(x) = py(x).

3. proof that PLV(x) +5!™(x, a8 m » e in the L -norm. Let us show
that
(3.1) ua [ 1M (0 - ™0 |%ax =0 .
me+o I
From the Property III, in particular (1.11) applied to £(x) = Pm(x), we

obtain
(3.2) [ @e!MorZax - [ ™ x2ax = [ @M 0 - s (x))2ax .

I I I
The definition (1.5) of
(3.3) My = [ L (x))2ax

1

as a minimum, and (3.2), show that
(3.4) [ M - s (x))2ax =min [ ™00 - s (x))2ax .

1

rell I
m

Clearly, the class nm expands on increasing m; this shows that “n,m is

[ -
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non~increasing for increasing m, and by (3.2) also the right side of (3.2)

form a non-increasing sequence. This insures the existence of the non-

negative limit

(3.5) 1m [ (2{™ - s(®)2a¢ = 1 .
m+o T

A proof of (3.1) is now equivalent to showing that

(3‘6) L = 0 .
This requires two lemmas from Approximation Theory, the first of which is
well known as an easy consequence of Weierstrass' theorem.

Lemma 1. Given ¢> 0 we can find a polynomial P,(x) such that

(3.7) IS(x) = Pu(x) | < ¢ and I5'®(x) - B{®)(x)] ¢ & in 1.

Indeed, if in the relation

n=-1 1 X
stx) = 3 s'Ta)(x - a)T/rt + st [ (x - )% '8(M)(g)ae
0 (n - 1)! a

We approximate to s(n)(t) closely by a polynomial p(t), then the
polynomial

n-1 x

P(x) = ) s{™) (a)(x - a)T/r1 + —_— [ (x - t)n-1p(t)dt
0 n - 1! a

(

will also approximate closely to S(x). Since P(n)(t) = p(t), the lemma

follows.

Lemma 2. Given § > 0, we can find an m > k, and a P(x) @ qn' such

that
(3.8) IsM(x) - p™(x)] ¢ § for xex.

Notice that P(x) € Ih‘ requires that P(xi) = ¥yie This we derive from

Lemma 1 by Lagrange interpolation as follows. Let P.(x) be the polynomial

. v I G R et 3
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‘ of Lemma 1 satisfying (3.7), and let
-4 (3.9) m = max(k, degree of P,) ,
hence P,(x) e L and m > k. From S(x;) = y; and the first inequality

(3.7) we have

(3.10) 'P.(xi) - Yil < € (L = 1'ooo'k) .
Let Q(x) € LW be such that
(3.11) Q(xi) = P.(xi) - yi, (1= 1,ooo,k) .

Finally, we define

3
i ( (n)

. Notice that S n)(x) - PN (x) = S(n)(x) - Pgn)(x) + Q(“)(x) and therefore
i 3.13)  Is!M ) - M) ¢ 180 (x) -~ M (x)) + 1) (xeD .
jj At this point observe that by (3.11) we have by Lagrange's formula
'.: k
) Q(x) = '2 g, (x) (B (%) = y,)

N i

! and therefore also the inequality
~'j (3.14) IQ(n)(x)lmis Kn m:le,(xi) - yil where K = m:x E |£in)(x)| .

% By (3.7), (3.13), and (3.14), we conclude that
X
A (3.15) 15 (x) = 2™ ) ¢ (14K e
Clearly, P(x) satisfies (3.8) if we choose ¢ = §/(1 + Kh)-
3 The P{(x) defined by (3.12) satisfies all conditions required by Lemma
‘ 2: P(x) @ T by (3.12). Also P(x) e qm' because by (3.11)
i

. : . P(xi) = P.(xi) - Q(xi) = P.(xi) - P.(xi) + YTy This completes a proof of

Lemma 2.




. A proof of (3.6) follows at once, because by (3.4) we have

> o¢ng¢f (P&“’ - s(n)y24, </ (p{m) - g(m))24, < §2(b - a) ,
| 1 1
‘f where & is arbitrarily small.
; 4. A_proof of the limit relation (1.12). Newton's formula with divided
; differences
" S(x) = S(x1) + (x - X1)S(X1'x2) + *°° + (x - x1) oo (x - xn_1)S(x1,-..,xn)
0 d
: + (x - x1) ee* (x - xn)s(x1,...,xn,x)
s ‘
; shows the following: 1If Qo(x) e “n—1 denotes the Lagrange interpolation
| - of S(x) at the points Xg,e..,X;, then
(4.1) S(x) = Qplx) + (x - xq) o (x - xn)s(x1,...,xn,x) .
This is possible because of (1.2), hence n < k.
Now we use the expression of divided differences in terms of B-splines:
=l } If .
F -
]
L (402) M(t) = M(t,x1’x2'oo.'xn,x) (x e I)
g 3 is the B-spline of degree n - 1 based on the n + 1 knots XqrooorX ,X,
F .=
o then
3 ,
% (4.3) S(xqreeerx,x) = — [ m(e)s(M (yae .
- n!
A b4
‘ (See e.qg. [1, p. 112]. In that paper B-splines are still called fundamental
P : splines.) Applying (4.1), (4.2), and (4.3) to S(x), as well as Pm(x), and
! ' subtracting one equation from the other, we obtain that
b
.l
| 1T (n) (n)
(4.4) P_(x) - S(x) = — T | (x=x,) * [me)e™) - s{™ieyae .
m n! 1 3 1 m ,

rraca

Applying the Schwarz inequality we obtain
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n
(4.5) IPn(x) - S(x)l2 £ (nl)-2 | | (x = xj)2 f H(t;x1,...,xn,x)2dt o
1 I

» [ el (e) - st (e))%a .
1

Since
O 2 2
(nl)-z l ' (x - xj) IM(t;x1,...,xn,x) at
1 I

is certainly a continuous function of the variable x e I, it is also

bounded. Therefore there is a constant Hz

such that (4.5) gives the
estimate
Ip(x) - s(x) 12 ¢ 82 [ ®{™(e) - s e))2at for xe1 .
I

Now the relation (3.1) completes our proof of (1.12).

5. Numerical examples. The explicit evaluation of the polynomial

Pp(x) is an elementary problem of linear algebra in m + 1 unknowns. This
is the reason why Theorem 1 is so welcome: It replaces for large m, the
construction of P (x) by the much simpler congtruction of S(x). We may say
that Theorem 1 adds to the interest that we attribute to the natural spline
interpolant S(x) = S, _,(x).

The unicity of Pm(x) in Theorem 1 clearly implies that if the data
(1.1) are symmetric about the origin, i.e. b = -a, Xy = "Xy j41s then
Pm(x) must be an even polynomial, hence P2r+,(x) = Pzr(x).

For our examples we choose the simplest such symmetric case, namely

k =3, (a,b) = (-1,1), x4 = -1, xy = 0, X3 = 1, yq = 1, y, = 0, y3 = 1.

Selecting n =1, and m=3, 4, 5, 6, and 7, we find by elementary

calculations that
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Py(x) = 2,

PR -

Py(x) = Pg(x) = (18/11)x% - (7/11)x* ,

Pg(x) = By(x) = (25/11)x2 = (25/11)x% + 8,
while the natural spline interpolant is the linear spline S(x) = [x|,
=1 ¢ x £ 1. The sequence of values

P3(1/2) = .25, P4(1/2) = Pg(1/2) = .37, Pg(1/2) = Po(1/2) = .44 ,

which converge to S(1/2) = .5, illustrates Theorem 1.
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‘ and define the polynomial class

"

no= {P(x); P(x) € LAY P(xi) Y., i=1,...,k)} .

i

Within Hm we determine Pm(x) as the solution of the extremum problem

(2) f (P(n)(x))zdx = minimum for P(x) € LI
I

Finally, let S(x) = (x) be the natural spline interpolant of degree

S2m-1

2n - 1 of the k points (1). Our main result is

=t

Theorem 1. 1. There is a unique polynomial Pm(x) which is the

solution of the minimum problem (2).

“ 2. We have

- lim P (x) = S(x) wuniformly in xe€ I .
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